API reference
Docstrings
IndexedFactorGraphs.FactorGraph
— TypeFactorGraph{T}
A type representing a factor graph.
IndexedFactorGraphs.FactorGraph
— MethodFactorGraph(A::AbstractMatrix)
Construct a FactorGraph
from adjacency matrix A
with the convention that rows are factors, columns are variables.
IndexedFactorGraphs.FactorGraphVertex
— TypeFactorGraphVertex
A type to represent a vertex in a bipartite graph, to be passed as an argument to neighbors
, inedges
, outedges
, see examples therein. It is recommended to use the variable
and factor
constructors.
IndexedFactorGraphs.InfiniteRegularFactorGraph
— TypeInfiniteRegularFactorGraph <: AbstractFactorGraph
A type to represent an infinite regular factor graph with fixed factor and variable degree
IndexedFactorGraphs.InfiniteRegularFactorGraph
— MethodInfiniteRegularFactorGraph(kᵢ, kₐ)
Construct an InfiniteRegularFactorGraph
with variable degree kᵢ
and factor degree kₐ
Graphs.edges
— Methodedges(g::FactorGraph)
Return a lazy iterator to the edges of g
, with the convention that the source is the factor and the destination is the variable
julia> using IndexedFactorGraphs
julia> g = FactorGraph([0 1 1 0;
1 0 0 0;
0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges
julia> collect(edges(g))
5-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
Indexed Edge 2 => 1 with index 1
Indexed Edge 1 => 2 with index 2
Indexed Edge 1 => 3 with index 3
Indexed Edge 3 => 3 with index 4
Indexed Edge 3 => 4 with index 5
Graphs.neighbors
— MethodIndexedGraphs.neighbors(g::FactorGraph, v::FactorGraphVertex)
Return a lazy iterators to the neighbors of vertex v
.
Examples
julia> using IndexedFactorGraphs
julia> g = FactorGraph([0 1 1 0;
1 0 0 0;
0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges
julia> collect(neighbors(g, variable(3)))
2-element Vector{Int64}:
1
3
julia> collect(neighbors(g, factor(2)))
1-element Vector{Int64}:
1
IndexedFactorGraphs.edge_indices
— Methodedge_indices(g::FactorGraph)
Return a lazy iterator to the indices of the edges in g
IndexedFactorGraphs.edge_indices
— Methodedge_indices(g::FactorGraph, v::FactorGraphVertex)
Return a lazy iterator to the indices of the edges incident on vertex v
, with v
.
The output of edge_indices
does not allocate and it can be used to index external arrays of properties directly
Examples
julia> using IndexedFactorGraphs, Test
julia> g = FactorGraph([0 1 1 0;
1 0 0 0;
0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges
julia> edgeprops = randn(ne(g));
julia> indices = (idx(e) for e in outedges(g, variable(3)));
julia> indices_noalloc = edge_indices(g, variable(3));
julia> @assert edgeprops[collect(indices)] == edgeprops[indices_noalloc]
julia> @test_throws ArgumentError edgeprops[indices]
Test Passed
Thrown: ArgumentError
IndexedFactorGraphs.factor
— Methodfactor(a::Integer)
Wraps index a
in a container such that other functions like neighbors
, inedges
, outedges
, knowing that it indices a factor node.
IndexedFactorGraphs.factors
— Methodfactors(g::FactorGraph)
Return a lazy iterator to the indices of factor vertices in g
.
IndexedFactorGraphs.nfactors
— Methodnactors(g::FactorGraph)
Return the number of actors vertices in g
.
IndexedFactorGraphs.nvariables
— Methodnvariables(g::FactorGraph)
Return the number of variables vertices in g
.
IndexedFactorGraphs.pairwise_interaction_graph
— Methodpairwise_interaction_graph(g::IndexedGraph)
Construct a factor graph whose factors are the pair-wise interactions encoded in g
.
IndexedFactorGraphs.rand_factor_graph
— Methodrand_factor_graph([rng=default_rng()], nvar, nfact, ned)
Create a factor graph with nvar
variables, nfact
factors and ned
edges taken uniformly at random.
IndexedFactorGraphs.rand_factor_graph
— Methodrand_factor_graph([rng=default_rng()], nvar, nfact, p)
Create a factor graph with nvar
variables, nfact
factors and edges taken independently with probability p
.
IndexedFactorGraphs.rand_regular_factor_graph
— Methodrand_regular_factor_graph([rng=default_rng()], nvar, nfact, k)
Create a factor graph with nvar
variables and nfact
factors, where all factors have degree k
.
IndexedFactorGraphs.rand_tree_factor_graph
— Methodrand_tree_factor_graph([rng=default_rng()], n)
Create a tree factor graph with n
vertices in total. The proportion of variables/factors is casual.
IndexedFactorGraphs.variable
— Methodvariable(i::Integer)
Wraps index i
in a container such that other functions like neighbors
, inedges
, outedges
, knowing that it indices a variable node.
IndexedFactorGraphs.variables
— Methodvariables(g::FactorGraph)
Return a lazy iterator to the indices of variable vertices in g
.
IndexedGraphs.inedges
— MethodIndexedGraphs.inedges(g::FactorGraph, v::FactorGraphVertex)
Return a lazy iterators to the edges incident on vertex v
, with v
as the destination.
Examples
julia> using IndexedFactorGraphs
julia> g = FactorGraph([0 1 1 0;
1 0 0 0;
0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges
julia> collect(inedges(g, factor(2)))
1-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
Indexed Edge 1 => 2 with index 1
julia> collect(inedges(g, variable(3)))
2-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
Indexed Edge 1 => 3 with index 3
Indexed Edge 3 => 3 with index 4
IndexedGraphs.outedges
— MethodIndexedGraphs.outedges(g::FactorGraph, v::FactorGraphVertex)
Return a lazy iterators to the edges incident on vertex v
, with v
as the source.
Examples
julia> using IndexedFactorGraphs
julia> g = FactorGraph([0 1 1 0;
1 0 0 0;
0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges
julia> collect(outedges(g, factor(2)))
1-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
Indexed Edge 2 => 1 with index 1
julia> collect(outedges(g, variable(3)))
2-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
Indexed Edge 3 => 1 with index 3
Indexed Edge 3 => 3 with index 4
RecipesBase.plot
— Methodplot(g::FactorGraph; kwargs...)
Plot factor graph g
with boxes for factor nodes and circles for variable nodes. It is based on GraphRecipes.graphplot
.
Optional arguments
shownames
: if set totrue
, displays the index on every node- optional arguments to
graphplot
Examples
julia> using IndexedFactorGraphs
julia> using Plots, GraphRecipes
julia> g = FactorGraph([0 1 1 0;
1 0 1 0;
0 0 1 1])
FactorGraph{Int64} with 3 factors, 4 variables and 6 edges
julia> plot(g)
Index
IndexedFactorGraphs.FactorGraph
IndexedFactorGraphs.FactorGraph
IndexedFactorGraphs.FactorGraphVertex
IndexedFactorGraphs.InfiniteRegularFactorGraph
IndexedFactorGraphs.InfiniteRegularFactorGraph
Graphs.edges
Graphs.neighbors
IndexedFactorGraphs.edge_indices
IndexedFactorGraphs.edge_indices
IndexedFactorGraphs.factor
IndexedFactorGraphs.factors
IndexedFactorGraphs.nfactors
IndexedFactorGraphs.nvariables
IndexedFactorGraphs.pairwise_interaction_graph
IndexedFactorGraphs.rand_factor_graph
IndexedFactorGraphs.rand_factor_graph
IndexedFactorGraphs.rand_regular_factor_graph
IndexedFactorGraphs.rand_tree_factor_graph
IndexedFactorGraphs.variable
IndexedFactorGraphs.variables
IndexedGraphs.inedges
IndexedGraphs.outedges
RecipesBase.plot