API reference

Docstrings

IndexedFactorGraphs.FactorGraphMethod
FactorGraph(A::AbstractMatrix)

Construct a FactorGraph from adjacency matrix A with the convention that rows are factors, columns are variables.

source
Graphs.edgesMethod
edges(g::FactorGraph)

Return a lazy iterator to the edges of g, with the convention that the source is the factor and the destination is the variable

julia> using IndexedFactorGraphs

julia> g = FactorGraph([0 1 1 0;
                        1 0 0 0;
                        0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges

julia> collect(edges(g))
5-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
 Indexed Edge 2 => 1 with index 1
 Indexed Edge 1 => 2 with index 2
 Indexed Edge 1 => 3 with index 3
 Indexed Edge 3 => 3 with index 4
 Indexed Edge 3 => 4 with index 5
source
Graphs.neighborsMethod
IndexedGraphs.neighbors(g::FactorGraph, v::FactorGraphVertex)

Return a lazy iterators to the neighbors of vertex v.

Examples

julia> using IndexedFactorGraphs

julia> g = FactorGraph([0 1 1 0;
                        1 0 0 0;
                        0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges

julia> collect(neighbors(g, variable(3)))
2-element Vector{Int64}:
 1
 3

julia> collect(neighbors(g, factor(2)))
1-element Vector{Int64}:
 1
source
IndexedFactorGraphs.edge_indicesMethod
edge_indices(g::FactorGraph, v::FactorGraphVertex)

Return a lazy iterator to the indices of the edges incident on vertex v, with v.

The output of edge_indices does not allocate and it can be used to index external arrays of properties directly

Examples

julia> using IndexedFactorGraphs, Test

julia> g = FactorGraph([0 1 1 0;
                        1 0 0 0;
                        0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges

julia> edgeprops = randn(ne(g));

julia> indices = (idx(e) for e in outedges(g, variable(3)));

julia> indices_noalloc = edge_indices(g, variable(3));

julia> @assert edgeprops[collect(indices)] == edgeprops[indices_noalloc]

julia> @test_throws ArgumentError edgeprops[indices]
Test Passed
      Thrown: ArgumentError
source
IndexedGraphs.inedgesMethod
IndexedGraphs.inedges(g::FactorGraph, v::FactorGraphVertex)

Return a lazy iterators to the edges incident on vertex v, with v as the destination.

Examples

julia> using IndexedFactorGraphs

julia> g = FactorGraph([0 1 1 0;
                        1 0 0 0;
                        0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges

julia> collect(inedges(g, factor(2)))
1-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
 Indexed Edge 1 => 2 with index 1


julia> collect(inedges(g, variable(3)))
2-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
 Indexed Edge 1 => 3 with index 3
 Indexed Edge 3 => 3 with index 4
source
IndexedGraphs.outedgesMethod
IndexedGraphs.outedges(g::FactorGraph, v::FactorGraphVertex)

Return a lazy iterators to the edges incident on vertex v, with v as the source.

Examples

julia> using IndexedFactorGraphs

julia> g = FactorGraph([0 1 1 0;
                        1 0 0 0;
                        0 0 1 1])
FactorGraph{Int64} with 4 variables, 3 factors, and 5 edges

julia> collect(outedges(g, factor(2)))
1-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
 Indexed Edge 2 => 1 with index 1

julia> collect(outedges(g, variable(3)))
2-element Vector{IndexedGraphs.IndexedEdge{Int64}}:
 Indexed Edge 3 => 1 with index 3
 Indexed Edge 3 => 3 with index 4
source
RecipesBase.plotMethod
plot(g::FactorGraph; kwargs...)

Plot factor graph g with boxes for factor nodes and circles for variable nodes. It is based on GraphRecipes.graphplot.

Optional arguments

  • shownames: if set to true, displays the index on every node
  • optional arguments to graphplot

Examples

julia> using IndexedFactorGraphs

julia> using Plots, GraphRecipes

julia> g = FactorGraph([0 1 1 0;
                        1 0 1 0;
                        0 0 1 1])
FactorGraph{Int64} with 3 factors, 4 variables and 6 edges

julia> plot(g)
source

Index